Boyne Island
Environmental Education Centre

PROGRAMS

With Curriculum links
<table>
<thead>
<tr>
<th>C2C resourced units</th>
<th>Science understanding</th>
<th>Science as a human endeavour</th>
<th>Science inquiry skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1: Living Adventure (Term 1)</td>
<td>Biological sciences • Living things have a variety of external features • Living things live in different places where their needs are met</td>
<td>Nature and development of science • Science involves asking questions about, and describing changes in, objects and events Use and influence of science • People use science in their daily lives, including when caring for their environment and living things</td>
<td>Questioning and predicting • Respond to and pose questions, and make predictions about familiar objects and events Planning and conducting • Participate in different types of guided investigations to explore and answer questions, such as manipulating materials, testing ideas, and accessing information sources Evaluating • Compare observations with those of others Communicating • Represent and communicate observations and ideas in a variety of ways such as oral and written language, drawing and role play</td>
</tr>
<tr>
<td>Year 1: Light and sound (Term 4)</td>
<td>Physical sciences • Light and sound are produced by a range of sources and can be sensed</td>
<td>Nature and development of science • Science involves asking questions about, and describing changes in, objects and events Use and influence of science • People use science in their daily lives, including when caring for their environment and living things</td>
<td>Questioning and predicting • Respond to and pose questions, and make predictions about familiar objects and events Planning and conducting • Participate in different types of guided investigations to explore and answer questions, such as manipulating materials, testing ideas, and accessing information sources Processing and analysing data and information • Use a range of methods to sort information, including drawings and provided tables Evaluating • Compare observations with those of others Communicating • Represent and communicate observations and ideas in a variety of ways such as oral and written language, drawing and role play</td>
</tr>
<tr>
<td>Year 2: Toy Factory (Term 2)</td>
<td>Physical sciences • A push or a pull affects how an object moves or changes shape.</td>
<td>Nature and development of science • Science involves asking questions about, and describing changes in, objects and events Use and influence of science • People use science in their daily lives, including when caring for their environment and living things</td>
<td>Questioning and predicting • Respond to and pose questions, and make predictions about familiar objects and events Planning and conducting • Participate in different types of guided investigations to explore and answer questions, such as manipulating materials, testing ideas, and accessing information sources Processing and analysing data and information • Use a range of methods to sort information, including drawings and provided tables Evaluating • Reflect on the investigation, including whether a test was fair or not Communicating • Represent and communicate ideas and findings in a variety of ways such as diagrams and simple reports</td>
</tr>
<tr>
<td>Year 3—Hot Stuff (Term 3)</td>
<td>Physical Sciences • Heat can be produced in many ways and can move from one object to another</td>
<td>Nature and development of science • Science involves making predictions and describing patterns and relationships Use and influence of science • Science knowledge helps people understand the effect of their actions</td>
<td>Questioning and predicting • With guidance, predict what might happen based on prior knowledge Planning and conducting • conduct investigations to find answers to questions Safely use appropriate materials, tools or equipment to make and record observations, using formal measurements and digital technologies as appropriate Processing and analysing data and information • Use a range of methods including to represent data and to identity trends Compare results suggesting possible reasons for findings Evaluating • Reflect on the investigation, including whether a test was fair or not Communicating • Represent and communicate ideas and findings in a variety of ways such as diagrams and simple reports</td>
</tr>
</tbody>
</table>

Students will:

- **Year 1: Living Adventure (Term 1)** investigate various habitats around the canoe point area including rocky foreshore, sand dune and forest. ASSESSMENT: Assignment “a better place”
- **Year 1: Light and sound (Term 4)** explore sources of light and sound and the senses used to observe them. They manipulate materials to observe how light and sound are produced, and how changes can be made to light and sound effects. They examine how light and sound are used in everyday life and by a variety of cultures. They make predictions; share ideas and sort information about light and sound and represent and communicate their understanding in a variety of ways. ASSESSMENT: Collection of work “Light & Sound”
- **Year 2: Toy Factory (Term 2)** investigate and explain how pushes and pulls cause movement in objects used in their daily lives. They pose questions, make predictions and describe the effect on movement caused by changes to an object, or to the push or pull exerted on the object. Students use informal measurements to make and compare observations about movement. They then apply this science knowledge to explain the pushes and pulls involved in moving a toy or object they create. ASSESSMENT: Assignment “Toy Design”
- **Year 3—Hot Stuff (Term 3)** explore ways by which heat is produced such as the Sun, rubbing, electricity and chemically (burning). Students will also study the behaviour of heat as it moves from one object to another. Students use thermometers to measure their observations of heat and adhere to safety practices while conducting investigations of heat. Students use knowledge of the behaviour of heat to explain everyday occurrences and consider how this knowledge impacts on everyday actions. ASSESSMENT: Scientific report “Keep drinks cooler”
<table>
<thead>
<tr>
<th>Year 3</th>
<th>Is it living? (Term 1)</th>
<th>Biological sciences</th>
<th>Nature and development of science</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>justify groupings of living and non-living things according to observable features and the need for recognition of once-living things. Students will investigate the diversity of living and non-living things in their local environment and recognise the use of this knowledge in their lives.</td>
<td>• Living things can be grouped on the basis of observable features and can be distinguished from non-living things</td>
<td>• Science involves making predictions and describing patterns and relationships</td>
</tr>
<tr>
<td></td>
<td>ASSESSMENT: Science Journal “Is it Living?”</td>
<td>Use and influence of science</td>
<td>• Science knowledge helps people to understand the effect of their actions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Properties Matter (Term 3)</th>
<th>Chemical sciences</th>
<th>Nature and development of science</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>investigate physical properties of materials and consider how these properties influence the selection of materials for particular purposes. Students plan, conduct, evaluate and report on an investigation into the properties of ochre and apply this knowledge to real life situations.</td>
<td>• Natural and processed materials have a range of physical properties; These properties can influence their use</td>
<td>• Science involves making predictions and describing patterns and relationships</td>
</tr>
<tr>
<td></td>
<td>ASSESSMENT: Scientific report “Properties affecting the use of ochre”</td>
<td>Use and influence of science</td>
<td>• Science knowledge helps people to understand the effect of their actions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Fast Forces (Term 4)</th>
<th>Physical sciences</th>
<th>Nature and development of science</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Students will use games to investigate and demonstrate how forces affect objects through contact and non-contact forces. They will use their knowledge of forces to make predictions about games. Games will be completed safely in order to collect data so that findings can be communicated. Students will also identify situations where science is used to ask questions or to make predictions. They will identify how science knowledge of forces helps people understand the effects of their actions.</td>
<td>• Forces can be exerted by one object on another through direct contact or from a distance</td>
<td>• Science involves making predictions and describing patterns and relationships</td>
</tr>
<tr>
<td></td>
<td>ASSESSMENT: Portfolio “Forces”</td>
<td>Use and influence of science</td>
<td>• Science knowledge helps people to understand the effect of their actions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 5</th>
<th>Matter Matters (Term 4)</th>
<th>Physical sciences</th>
<th>Nature and development of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Students will broaden their classification of matter to include gases and begin to see how matter structures the world around them. Students will pose questions, make predictions and plan investigation methods into the observable properties and behaviour of solids, liquids and gases. Students will understand that scientific understandings about solids liquids and gases are used to inform decision making and solve or prevent problems</td>
<td>• Light from a source forms shadows and can be absorbed, reflected and refracted</td>
<td>• Important contributions to the advancement of science have been made by people from a range of cultures</td>
</tr>
<tr>
<td></td>
<td>ASSESSMENT: Assignment “Investigating evaporation and explaining solids, liquids and gases”</td>
<td>Use and influence of science</td>
<td>• Science involves testing predictions by gathering data and using evidence to develop explanations of events and phenomena</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use and influence of science</td>
<td>• Scientific understandings, discoveries and inventions are used to solve problems that directly affect peoples’ lives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Questioning and predicting</td>
<td>• With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planning and conducting</td>
<td>• Decide which variable should be changed and measured in fair tests and accurately observe, measure and record data, using digital technologies as appropriate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Processing and analysing data and information</td>
<td>• Use equipment and materials safely, identifying potential risks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaluating</td>
<td>• With guidance, plan appropriate investigation methods to answer questions or solve problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communicating</td>
<td>• Suggest improvements to the methods used to investigate a question or solve a problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Questioning and predicting</td>
<td>• Compare data with predictions and use as evidence in developing explanations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planning and conducting</td>
<td>• Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Processing and analysing data and information</td>
<td>• Reflect on the investigation; including whether a test was fair or not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaluating</td>
<td>• Represent and communicate ideas and findings in a variety of ways such as diagrams, physical representations and simple reports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communicating</td>
<td>• Suggest improvements to the methods used to investigate a question or solve a problem</td>
</tr>
</tbody>
</table>
Year 6 - Energy & Electricity (Term 2)

Physical sciences
- Electrical circuits provide a means of transferring and transforming electricity.
- Energy from a variety of sources can be used to generate electricity

Nature and development of science
- Science involves testing predictions by gathering data and using evidence to develop explanations of events and phenomena

Use and influence of science
- Scientific knowledge is used to inform personal and community decisions
- Scientific understandings, discoveries and inventions are used to solve problems that directly affect peoples’ lives

Questioning and predicting
- With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be

Planning and conducting
- Use equipment and materials safely, identifying potential risks

Processing and analysing data and information
- Compare data with predictions and use as evidence in developing explanations
- Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate

Communicating
- Communicate ideas, explanations and processes in a variety of ways, including multimodal texts

Year 6 - Life on Earth

Biological sciences
- The growth and survival of living things are affected by the physical conditions of their environment

Nature and development of science
- Science involves testing predictions by gathering data and using evidence to develop explanations of events and phenomena

Use and influence of science
- Scientific understandings, discoveries and inventions are used to solve problems that directly affect peoples’ lives
- Scientific knowledge is used to inform personal and community decisions

Questioning and predicting
- With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be

Planning and conducting
- With guidance, plan appropriate investigation methods to answer questions or solve problems
- Decide which variable should be changed and measured in fair tests and accurately
- Use equipment and materials safely, identifying potential risks

Processing and analysing data and information
- Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate
- Compare data with predictions and use as evidence in developing explanations

Communicating
- Communicate ideas, explanations and processes in a variety of ways, including multimodal texts

Year 7 - Affecting Organisms

Biological sciences
- Interactions between organisms can be described in terms of food chains and food webs; human activity can affect these interactions

Nature and development of science
- Science involves testing predictions by gathering data and using evidence to develop explanations of events and phenomena

Use and influence of science
- People use understanding and skills from across the disciplines of science in their occupations
- Science and technology contribute to finding solutions to a range of contemporary issues; these solutions may impact on other areas of society and involve ethical considerations
- Science understanding influences the development of practices in areas of human activity such as industry, agriculture and marine and terrestrial resource management

Questioning and predicting
- With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be

Planning and conducting
- With guidance, plan appropriate investigation methods to answer questions or solve problems
- Decide which variable should be changed and measured in fair tests and accurately
- Use equipment and materials safely, identifying potential risks

Processing and analysing data and information
- Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate
- Compare data with predictions and use as evidence in developing explanations

Communicating
- Communicate ideas, findings and solutions to problems using scientific language and representations using digital technologies as appropriate

Planning and conducting
- Collaboratively and individually plan and conduct a range of investigation types, including fieldwork and experiments, ensuring safety and ethical guidelines are followed

Year 7 - Moving right along

Physical sciences
- Change to an object’s motion is caused by unbalanced forces acting on the object

Nature and development of science
- Scientific knowledge changes as new evidence becomes available, and some scientific discoveries have significantly changed people’s understanding of the world
- Science knowledge can develop through collaboration and connecting ideas across the disciplines of science

Use and influence of science
- Science and technology contribute to finding solutions to a range of contemporary issues; these solutions may impact on other areas of society and involve ethical considerations
- Science understanding influences the development of practices in areas of human activity such as industry, agriculture and marine and terrestrial resource management
- People use understanding and skills from across the disciplines of science in their occupations

Questioning and predicting
- Identify questions and problems that can be investigated scientifically and make predictions based on scientific knowledge

Planning and conducting
- Collaboratively and individually plan and conduct a range of investigation types, including fieldwork and experiments, ensuring safety and ethical guidelines are followed
- In fair tests, measure and control variables, and select equipment to collect data with accuracy appropriate to the task

Processing and analysing data and information
- Construct and use a range of representations, including graphs, keys and models to represent and analyse patterns or relationships, including using digital technologies as appropriate
- Summarise data, from students’ own investigations and secondary sources, and use scientific understanding to identify relationships and draw conclusions

Evaluating
- Reflect on the method used to investigate a question or solve a problem, including evaluating the quality of the data collected, and identify improvements to the method
- Use scientific knowledge and findings from investigations to evaluate claims

Communicating
- Communicate ideas, findings and solutions to problems using scientific language and representations using digital technologies as appropriate
Other BIEEC Science Programs

<table>
<thead>
<tr>
<th>Activity & Description</th>
<th>Year</th>
<th>Science understanding BIOLOGICAL SCIENCE</th>
<th>Science as a human endeavour</th>
<th>Science inquiry skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangroves - Low Water: Explore the organisms in the mud and the plants of the forest and how mangroves protect all living organisms.</td>
<td>1</td>
<td>- Living things have basic needs, including food and water</td>
<td>Nature and development of science • Science involves exploring and observing the world using the senses</td>
<td>Questioning and predicting • Respond to questions about familiar objects and events Planning and conducting • Explore and make observations by using the senses Processing and analysing data and information • Engage in discussions about observations and use methods such as drawing to represent ideas Communicating • Share observations and ideas</td>
</tr>
<tr>
<td>Mangroves - High Water: Explore river mangroves, how they cope with salt whilst paddling the canoes up the Boyne River.</td>
<td>2</td>
<td>- Living things grow, change and have offspring similar to themselves</td>
<td>Nature and development of science • Science involves asking questions about, and describing changes in, objects and events Use and influence of science • People use science in their daily lives, including when caring for their environment and living things</td>
<td>Questioning and predicting • Respond to and pose questions, and make predictions about familiar objects and events Planning and conducting • Participate in different types of guided investigations to explore and answer questions, such as manipulating materials, testing ideas, and accessing information sources Processing and analysing data and information • Use informal measurements in the collection and recording of observations, with the assistance of digital technologies as appropriate Evaluating • Use a range of methods to sort information, including drawings and provided tables Communicating • Compare observations with those of others</td>
</tr>
<tr>
<td>Rocky Foreshore: Investigate the many zones of the rocky foreshore and which organisms adapt to be able to survive and withstand the exposure to the sun and periodic inundation of saltwater.</td>
<td>3</td>
<td>- Living things can be grouped on the basis of observable features and can be distinguished from non-living things</td>
<td>Nature and development of science • Science involves making predictions and describing patterns and relationships Use and influence of science • Science knowledge helps people to understand the effect of their actions</td>
<td>Questioning and predicting • With guidance, identify questions in familiar contexts that can be investigated scientifically and predict what might happen based on prior knowledge Planning and conducting • Suggest ways to plan and conduct investigations to find answers to questions Use and influence of science • Safely use appropriate materials, tools or equipment to make and record observations, using formal measurements and digital technologies as appropriate Processing and analysing data and information • Use a range of methods including tables and simple column graphs to represent data and to identify patterns and trends Evaluating • Reflect on the investigation; including whether a test was fair or not Communicating • Represent and communicate ideas and findings in a variety of ways such as diagrams, physical representations and simple reports</td>
</tr>
<tr>
<td>Insects: Collect and study various insects present in the Boyne/ Tannum local area and study their life cycles.</td>
<td>4</td>
<td>- Living things have life cycles • Living things, including plants and animals, depend on each other and the environment to survive</td>
<td>Nature and development of science • Science involves testing predictions by gathering data and using evidence to develop explanations of events and phenomena Important contributions to the advancement of science have been made by people from a range of cultures Use and influence of science • Important contributions to science have been made by people from a range of cultures • Scientific understandings, discoveries and inventions are used to solve problems that directly affect peoples’ lives • Scientific knowledge is used to inform personal and community decisions</td>
<td>Questioning and predicting • With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be Planning and conducting • With guidance, plan appropriate investigation methods to answer questions or solve problems Use and influence of science • Decide which variable should be changed and measured in fair tests and accurately observe, measure and record data, using digital technologies as appropriate Processing and analysing data and information • Use equipment and materials safely, identifying potential risks Evaluating • Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate Communicating • Compare data with predictions and use as evidence in developing explanations</td>
</tr>
<tr>
<td>Nature walk: Investigate and identify fauna and flora in our local environment by exploring the forest through the use of binoculars.</td>
<td>5</td>
<td>- Living things have structural features and adaptations that help them to survive in their environment</td>
<td>Nature and development of science • Science involves testing predictions by gathering data and using evidence to develop explanations of events and phenomena Important contributions to the advancement of science have been made by people from a range of cultures Use and influence of science • Important contributions to science have been made by people from a range of cultures • Scientific understandings, discoveries and inventions are used to solve problems that directly affect peoples’ lives • Scientific knowledge is used to inform personal and community decisions</td>
<td>Questioning and predicting • With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be Planning and conducting • With guidance, plan appropriate investigation methods to answer questions or solve problems Use and influence of science • Decide which variable should be changed and measured in fair tests and accurately observe, measure and record data, using digital technologies as appropriate Processing and analysing data and information • Use equipment and materials safely, identifying potential risks Evaluating • Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate Communicating • Compare data with predictions and use as evidence in developing explanations</td>
</tr>
<tr>
<td>Plankton viewing: Collect local water samples and use microscopes & plankton identification charts to identify the various types of plankton present in the water samples. Investigate sensitivity of organisms present and correlation with water quality.</td>
<td>6</td>
<td>- The growth and survival of living things are affected by the physical conditions of their environment</td>
<td>Nature and development of science • Science involves testing predictions by gathering data and using evidence to develop explanations of events and phenomena Important contributions to the advancement of science have been made by people from a range of cultures Use and influence of science • Important contributions to science have been made by people from a range of cultures • Scientific understandings, discoveries and inventions are used to solve problems that directly affect peoples’ lives • Scientific knowledge is used to inform personal and community decisions</td>
<td>Questioning and predicting • With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be Planning and conducting • With guidance, plan appropriate investigation methods to answer questions or solve problems Use and influence of science • Decide which variable should be changed and measured in fair tests and accurately observe, measure and record data, using digital technologies as appropriate Processing and analysing data and information • Use equipment and materials safely, identifying potential risks Evaluating • Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate Communicating • Compare data with predictions and use as evidence in developing explanations</td>
</tr>
<tr>
<td>Dune Succession – study the sand dune community where plants have altered the environment resulting in changing communities, and habitats. Students take various measurements including light intensity, wind speed, canopy cover, soil profiles temperature, humidity etc to assist with distinguishing between the various communities within the sand dunes.</td>
<td>7</td>
<td>- The growth and survival of living things are affected by the physical conditions of their environment</td>
<td>Nature and development of science • Science involves testing predictions by gathering data and using evidence to develop explanations of events and phenomena Important contributions to the advancement of science have been made by people from a range of cultures Use and influence of science • Important contributions to science have been made by people from a range of cultures • Scientific understandings, discoveries and inventions are used to solve problems that directly affect peoples’ lives • Scientific knowledge is used to inform personal and community decisions</td>
<td>Questioning and predicting • With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be Planning and conducting • With guidance, plan appropriate investigation methods to answer questions or solve problems Use and influence of science • Decide which variable should be changed and measured in fair tests and accurately observe, measure and record data, using digital technologies as appropriate Processing and analysing data and information • Use equipment and materials safely, identifying potential risks Evaluating • Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate Communicating • Compare data with predictions and use as evidence in developing explanations</td>
</tr>
</tbody>
</table>
Freshwater - Explore the chemical & biological character of a pond using Waterwatch protocols

Forest - Examine forest structure and biotic and abiotic factors that influence the environment

Our Habitat: A hands-on introduction activity to demonstrate links between habitats in the Boyne/Tannum environment.

Fishing: learn how to correctly bait a hook to enable them to go fishing and explore various aspects of the ecosystem and the organisms that live in aquatic environments.

Full day programs (Year 6-12)

Coastal Systems – day trips Facing Island in Gladstone provide opportunities for students to study the biology of dune, salt marsh rocky foreshore areas; indigenous studies; boating, fishing, hiking and swimming.

Coastal Sea grass: Students will visit Curtis Is. (off Gladstone) and study the diversity of coral, sea grass. Students will also undertake fishing to gain an understanding of biodiversity of the marine ecosystem.

Coral: Students will visit Rat Is. and snorkel over coral to investigate the biodiversity of coral.

<table>
<thead>
<tr>
<th>Activity & Description</th>
<th>Year</th>
<th>Science understanding</th>
<th>Science as a human endeavour</th>
<th>Science inquiry skills</th>
</tr>
</thead>
</table>
| Astronomy - An evening program exploring constellations in the solar system, distance of stars from Earth and astronomy stories. | 3 | Earth's rotation on its axis causes regular changes, including night and day | Nature and development of science
- Science involves making predictions and describing patterns and relationships in nature
- Science knowledge helps people to understand the effect of their actions | Questioning and predicting
- With guidance, identify questions in familiar contexts that can be investigated scientifically and predict what might happen based on prior knowledge
Planning and conducting
- Suggest ways to plan and conduct investigations to find answers to questions
- Safely use appropriate materials, tools or equipment to make and record observations, using formal measurements and digital technologies as appropriate
- Use a range of methods including tables and simple column graphs to represent data and to identify patterns and trends |
| Weather – Students monitor the | 4 | Earth's surface changes over time as a result of natural processes and human activity | Use and influence of science
- Natural selection explains the diversity of living things and is supported by a range of scientific evidence
- People use understanding and skills from across the disciplines of science in their occupations |

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
</table>
| 5 | • The Earth is part of a system of planets orbiting around a star (the sun)
 • Sudden geological changes or extreme weather conditions can affect Earth's surface

| 6 | • Predictable phenomena on Earth, including seasons and eclipses, are caused by the relative positions of the sun, Earth and the moon
 • Some of Earth’s resources are renewable, but others are non-renewable
 • Water is an important resource that cycles through the environment

| 7 | • Sedimentary, igneous and metamorphic rocks contain minerals and are formed by processes that occur within Earth over a variety of timescales

| 8 | • The theory of plate tectonics explains global patterns of geological activity and continental movement

| 9 | • The universe contains features including galaxies, stars and solar systems and the Big Bang theory can be used to explain the origin of the universe
 • Global systems, including the carbon cycle, rely on interactions involving the biosphere, lithosphere, hydrosphere and atmosphere

| 10 | Offer results with predictions, suggesting possible reasons for findings
 • Reflect on the investigation; including whether a test was fair or not
 • Represent and communicate ideas and findings in a variety of ways such as diagrams, physical representations and simple reports
 • With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be
 • With guidance, plan appropriate investigation methods to answer questions or solve problems
 • Decide which variable should be changed and measured to be in fair tests and accurately observe, measure and record data, using digital technologies as appropriate
 • Use equipment and materials safely, identifying potential risks
 • Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate
 • Compare data with predictions and use as evidence in developing explanations
 • Suggest improvements to the methods used to investigate a question or solve a problem
 • Communicate ideas, explanations and processes in a variety of ways, including multi-modal texts
 • Identify questions and problems that can be investigated scientifically and make predictions based on scientific knowledge
 • Collaboratively and individually plan and conduct a range of investigation types, including fieldwork and experiments, ensuring safety and ethical guidelines are followed
 • In fair tests, measure and control variables, and select equipment to collect data with accuracy appropriate to the task
 • Construct and use a range of representations, including graphs, keys and models to represent and analyse patterns or relationships, including using digital technologies as appropriate
 • Summarise data, from students' own investigations and secondary sources, and use scientific understanding to identify relationships and draw conclusions
 • Reflect on the method used to investigate a question or solve a problem, including evaluating the quality of the data collected, and identify improvements to the method
 • Use scientific knowledge and findings from investigations to evaluate claims
 • Communicate ideas, findings and solutions to problems using scientific language and representations using digital technologies as appropriate
 • Formulate questions or hypotheses that can be investigated scientifically
 • Plan, select and use appropriate investigation methods, including fieldwork and laboratory experimentation, to collect reliable data; assess risk and address ethical issues associated with these methods
 • Select and use appropriate equipment, including digital technologies, to systematically and accurately collect and record data
 • Analyse patterns and trends in data, including describing relationships between variables and identifying inconsistencies
 • Use knowledge of scientific concepts to draw conclusions that are consistent with evidence
 • Evaluate conclusions, including identifying sources of uncertainty and possible alternative explanations, and describe specific ways to improve the quality of the data
 • Critically analyse the validity of information in secondary sources and evaluate the approaches used to solve problems
 • Communicate scientific ideas and information for a particular purpose, including constructing evidence-based arguments and using appropriate scientific language, conventions and representations
<table>
<thead>
<tr>
<th>Activity & Description</th>
<th>Year</th>
<th>Science understanding</th>
<th>Science as a human endeavour</th>
<th>Science inquiry skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploring Energy – Investigate alternate forms and non-renewable way of producing energy and how these compare. Students will learn about the many forms of energy (potential and kinetic) and how it is transferred into various types through practical experimentation of wind generators, solar powered objects, hydropower system and the simple process of eating. Forces – Investigate the many forces gravity, air resistance, friction, that impact upon object that move. Students design their own vehicle to see forces in action.</td>
<td>1</td>
<td>• Light and sound are produced by a range of sources and can be sensed</td>
<td>Nature and development of science • Science involves exploring and observing the world using the senses</td>
<td>Questioning and predicting • Respond to questions about familiar objects and events Planning and conducting • Explore and make observations by using the senses Processing and analysing data and information • Engage in discussions about observations and use methods such as drawing to represent ideas Communicating • Share observations and ideas</td>
</tr>
<tr>
<td>Light – Using light energy, students participate in a range of activities bending light and watching it be reflected, absorbed and refracted. They design a maze in a shoe box where light enters one side and is reflected off walls to shine out the other end. Heat – experiment with a range of appliances that conduct, insulate or radiate heat including stove tops, solar ovens & cookers, fire, pizza ovens</td>
<td>2</td>
<td>• A push or a pull affects how an object moves or changes shape</td>
<td>Nature and development of science • Science involves asking questions about, and describing changes in, objects and events Use and influence of science • People use science in their daily lives, including when caring for their environment and living things</td>
<td>Questioning and predicting • Respond to and pose questions, and make predictions about familiar objects and event Planning and conducting • Participate in different types of guided investigations to explore and answer questions, such as manipulating materials, testing ideas, and accessing information sources Processing and analysing data and information • Use a range of methods to sort information, including drawings and provided tables Evaluating • Through discussion, compare observations with predictions Communicating • Represent and communicate observations and ideas in a variety of ways such as oral and written language, drawing and role play</td>
</tr>
<tr>
<td>Heat – experiment with a range of appliances that conduct, insulate or radiate heat including stove tops, solar ovens & cookers, fire, pizza ovens</td>
<td>3</td>
<td>• Heat can be produced in many ways and can move from one object to another</td>
<td>Nature and development of science • Science involves making predictions and describing patterns and relationships Use and influence of science • Science knowledge helps people to understand the effect of their actions</td>
<td>Questioning and predicting • With guidance, identify questions in familiar contexts that can be investigated scientifically and predict what might happen based on prior knowledge Planning and conducting • Suggest ways to plan and conduct investigations to find answers to questions • Safely use appropriate materials, tools or equipment to make and record observations, using digital technologies as appropriate Processing and analysing data and information • Use a range of methods including tables and simple column graphs to represent data and to identify patterns and trends Evaluating • Compare results with predictions, suggesting possible reasons for findings Communicating • Reflect on the investigation; including whether a test was fair or not</td>
</tr>
<tr>
<td>4</td>
<td>• Forces can be exerted by one object on another through direct contact or from a distance</td>
<td>Nature and development of science • Science involves making predictions and describing patterns and relationships Use and influence of science • Science knowledge helps people to understand the effect of their actions</td>
<td>Questioning and predicting • With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be Planning and conducting • With guidance, plan appropriate investigation methods to answer questions or solve problems • Decide which variable should be changed and measured in fair tests and accurately observe, measure and record data, using digital technologies as appropriate • Use equipment and materials safely, identifying potential risks Processing and analysing data and information • Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate • Compare data with predictions and use as evidence in developing explanations Evaluating • Suggest improvements to the methods used to investigate a question or solve a problem Communicating • Represent and communicate ideas and findings in variety of way such as diagrams, physical representations and simple reports</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>• Light from a source forms shadows and can be absorbed, reflected and refracted</td>
<td>Nature and development of science • Science involves testing predictions by gathering data and using evidence to develop explanations of events and phenomena Important contributions to the advancement of science have been made by people from a range of cultures Use and influence of science • Science knowledge is used to inform personal and community decisions</td>
<td>Questioning and predicting • With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be Planning and conducting • With guidance, plan appropriate investigation methods to answer questions or solve problems • Decide which variable should be changed and measured in fair tests and accurately observe, measure and record data, using digital technologies as appropriate • Use equipment and materials safely, identifying potential risks Processing and analysing data and information • Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate • Compare data with predictions and use as evidence in developing explanations Evaluating • Suggest improvements to the methods used to investigate a question or solve a problem Communicating • Represent and communicate ideas, explanations and processes in a variety of ways, including multi-modal texts</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>• Electrical circuits provide a means of transferring and transforming electricity • Energy from a variety of sources can be used to generate electricity</td>
<td>Nature and development of science • Science knowledge changes as new evidence becomes available, and some scientific discoveries have significantly changed people’s understanding of the world knowledge can develop through collaboration and connecting ideas across the disciplines of science Use and influence of science • Science and technology contribute to finding solutions to a range of</td>
<td>Questioning and predicting • Identify questions and problems that can be investigated scientifically and make predictions based on scientific knowledge Planning and conducting • Collaboratively and individually plan and conduct a range of investigation types, including fieldwork and experiments, ensuring safety and ethical guidelines are followed • In fair tests, measure and control variables, and select equipment to collect data with accuracy appropriate to the task Processing and analysing data and information • Construct and use a range of representations, including graphs, keys and models to represent and analyse patterns or relationships, including using digital technologies as</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>• Change to an object’s motion is caused by unbalanced forces acting on the object • Earth’s gravity pulls objects towards the centre of the Earth</td>
<td>Nature and development of science • Science knowledge changes as new evidence becomes available, and some scientific discoveries have significantly changed people’s understanding of the world knowledge can develop through collaboration and connecting ideas across the disciplines of science Use and influence of science • Science and technology contribute to finding solutions to a range of</td>
<td>Questioning and predicting • Identify questions and problems that can be investigated scientifically and make predictions based on scientific knowledge Planning and conducting • Collaboratively and individually plan and conduct a range of investigation types, including fieldwork and experiments, ensuring safety and ethical guidelines are followed • In fair tests, measure and control variables, and select equipment to collect data with accuracy appropriate to the task Processing and analysing data and information • Construct and use a range of representations, including graphs, keys and models to represent and analyse patterns or relationships, including using digital technologies as</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>• Energy appears in different forms including movement</td>
<td>Nature and development of science • Science knowledge changes as new evidence becomes available, and some scientific discoveries have significantly changed people’s understanding of the world knowledge can develop through collaboration and connecting ideas across the disciplines of science Use and influence of science • Science and technology contribute to finding solutions to a range of</td>
<td>Questioning and predicting • Identify questions and problems that can be investigated scientifically and make predictions based on scientific knowledge Planning and conducting • Collaboratively and individually plan and conduct a range of investigation types, including fieldwork and experiments, ensuring safety and ethical guidelines are followed • In fair tests, measure and control variables, and select equipment to collect data with accuracy appropriate to the task Processing and analysing data and information • Construct and use a range of representations, including graphs, keys and models to represent and analyse patterns or relationships, including using digital technologies as</td>
<td></td>
</tr>
</tbody>
</table>
Energy conservation in a system can be explained using wave and particle models. The motion of objects can be described and predicted using the laws of physics.

Activity & Description

<table>
<thead>
<tr>
<th>Year</th>
<th>Science understanding</th>
<th>Science as a human endeavour</th>
<th>Science inquiry skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Everyday materials can be physically changed in a variety of ways.</td>
<td>Nature and development of science: Science involves exploring and observing the world using the senses.</td>
<td>Questioning and predicting: Respond to questions about familiar objects and events.</td>
</tr>
<tr>
<td>2</td>
<td>Different materials can be combined, including by mixing, for a particular purpose.</td>
<td>Nature and development of science: Science involves asking questions about, and describing changes in, objects and events. Use and influence of science: People use science in their daily lives, including when caring for their environment and living things.</td>
<td>Questioning and predicting: Respond to and pose questions, and make predictions about familiar objects and event. Planning and conducting: Participate in different types of guided investigations to explore and answer questions, such as manipulating materials, testing ideas, and accessing information sources. Processing and analysing data and information: Use informal measurements in the collection and recording of observations, with the assistance of digital technologies as appropriate. Evaluating: Use a range of methods to sort information, including drawings and provided tables. Communicating: Represent and communicate observations and ideas in a variety of ways such as oral and written language, drawing and role play.</td>
</tr>
<tr>
<td>3</td>
<td>A change of state between solid and liquid can be caused by adding or removing heat.</td>
<td>Nature and development of science: Science involves making predictions and describing patterns and relationships. Use and influence of science: Science knowledge helps people to understand the effect of their actions.</td>
<td>Questioning and predicting: With guidance, identify questions in familiar contexts that can be investigated scientifically and predict what might happen based on prior knowledge. Planning and conducting: Suggest ways to plan and conduct investigations to find answers to questions. Safely use appropriate materials, tools or equipment to make and record observations, using formal measurements and digital technologies as appropriate. Processing and analysing data and information: Use a range of methods including tables and simple column graphs to represent data.</td>
</tr>
<tr>
<td>4</td>
<td>Natural and processed materials have a range of physical properties; These materials have a range of physical properties.</td>
<td>Nature and development of science: Science understanding influences the development of practices in areas of human activity such as industry, agriculture and marine and terrestrial resource management. People use understanding and skills from across the disciplines of science in their occupations.</td>
<td>Questioning and predicting: Summarise data, from students' own investigations and secondary sources, and use scientific understanding to identify relationships and draw conclusions. Evaluating: Reflect on the method used to investigate a question or solve a problem, including evaluating the quality of the data collected, and identify improvements to the method. Use scientific knowledge and findings from investigations to evaluate claims. Communicating: Communicate ideas, findings and solutions to problems using scientific language and representations using digital technologies as appropriate.</td>
</tr>
<tr>
<td>5</td>
<td>Solids, liquids and gases have different observable properties and behave in different ways</td>
<td>Nature and development of science - Science involves testing predictions by gathering data and using evidence to develop explanations of events and phenomena. Important contributions to the advancement of science have been made by people from a range of cultural backgrounds. Use and influence of science - Scientific understandings, discoveries and inventions are used to solve problems that directly affect peoples’ lives. Scientific knowledge is used to inform personal and community decisions.</td>
<td>Questioning and predicting - With guidance, pose questions to clarify practical problems or inform a scientific investigation, and predict what the findings of an investigation might be. Planning and conducting - With guidance, plan appropriate investigation methods to answer questions or solve problems. Decide which variable should be changed and measured in fair tests and accurately observe, measure and record data, using digital technologies as appropriate. Evaluate equipment and materials safely, identifying potential risks. Processing and analysing data and information - Construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data using digital technologies as appropriate. Compare data with predictions and use as evidence in developing explanations. Evaluating - Suggest improvements to the methods used to investigate a question or solve a problem. Communicating - Communicate ideas, explanations and processes in a variety of ways, including multi-modal texts.</td>
</tr>
<tr>
<td>6</td>
<td>Changes to materials can be reversible, such as melting, freezing, evaporating; or irreversible, such as burning and rusting</td>
<td>Nature and development of science - Scientific knowledge changes as new evidence becomes available, and some scientific discoveries have significantly changed people’s understanding of the world. Knowledge can develop through collaboration and connecting ideas across the disciplines of science. Use and influence of science - Science and technology contribute to finding solutions to a range of contemporary issues; these solutions may impact on other areas of society and involve ethical considerations. Science understanding influences the development of practices in areas of human activity such as industry, agriculture and marine and terrestrial resource management. People use understanding and skills from across the disciplines of science in their occupations.</td>
<td>Questioning and predicting - Identify questions and problems that can be investigated scientifically and make predictions based on scientific knowledge. Planning and conducting - Collaboratively and individually plan and conduct a range of investigation types, including fieldwork and experiments, ensuring safety and ethical guidelines are followed. In fair tests, measure and control variables, and select equipment to collect data with accuracy appropriate to the task. Processing and analysing data and information - Construct and use a range of representations, including graphs, keys and models to represent and analyse patterns or relationships, including using digital technologies as appropriate. Summarise data, from students’ own investigations and secondary sources, and use scientific understanding to identify relationships and draw conclusions. Evaluating - Reflect on the method used to investigate a question or solve a problem, including evaluating the quality of the data collected, and identify improvements to the method. Communicating - Communicate ideas, findings and solutions to problems using scientific language and representations using digital technologies as appropriate.</td>
</tr>
<tr>
<td>7</td>
<td>Mixtures, including solutions, contain a combination of pure substances that can be separated using a range of techniques</td>
<td>Nature and development of science - Scientific understanding, including models and theories, are contestable and are refined over time through a process of review by the scientific community. Advances in scientific understanding often rely on developments in technology and technological advances are often linked to scientific discoveries. Use and influence of science - People can use scientific knowledge to evaluate whether they should accept claims, explanations or predictions. Advances in science and emerging sciences and technologies can significantly affect people’s lives, including generating new career opportunities. The values and needs of contemporary society can influence the focus of scientific research.</td>
<td>Questioning and predicting - Formulate questions or hypotheses that can be investigated scientifically. Planning and conducting - Plan, select and use appropriate investigation methods, including field work and laboratory experimentation, to collect reliable data; assess risk and address ethical issues associated with these methods. Select and use appropriate equipment, including digital technologies, to systematically and accurately collect and record data. Processing and analysing data and information - Analyse patterns and trends in data, including describing relationships between variables and identifying inconsistencies. Use knowledge of scientific concepts to draw conclusions that are consistent with evidence. Evaluating - Evaluate conclusions, including identifying sources of uncertainty and possible alternative explanations, and describe specific ways to improve the quality of the data. Critically analyse the validity of information in secondary sources and evaluate the approaches used to solve problems. Communicating - Communicate scientific ideas and information for a particular purpose, including constructing evidence-based arguments and using appropriate scientific language, conventions and representations.</td>
</tr>
<tr>
<td>8</td>
<td>The properties of the different states of matter can be explained in terms of the motion and arrangement of particles</td>
<td>Nature and development of science - Scientific understanding, including models and theories, are contestable and are refined over time through a process of review by the scientific community. Advances in scientific understanding often rely on developments in technology and technological advances are often linked to scientific discoveries. Use and influence of science - People can use scientific knowledge to evaluate whether they should accept claims, explanations or predictions. Advances in science and emerging sciences and technologies can significantly affect people’s lives, including generating new career opportunities. The values and needs of contemporary society can influence the focus of scientific research.</td>
<td>Questioning and predicting - Formulate questions or hypotheses that can be investigated scientifically. Planning and conducting - Plan, select and use appropriate investigation methods, including field work and laboratory experimentation, to collect reliable data; assess risk and address ethical issues associated with these methods. Select and use appropriate equipment, including digital technologies, to systematically and accurately collect and record data. Processing and analysing data and information - Analyse patterns and trends in data, including describing relationships between variables and identifying inconsistencies. Use knowledge of scientific concepts to draw conclusions that are consistent with evidence. Evaluating - Evaluate conclusions, including identifying sources of uncertainty and possible alternative explanations, and describe specific ways to improve the quality of the data. Critically analyse the validity of information in secondary sources and evaluate the approaches used to solve problems. Communicating - Communicate scientific ideas and information for a particular purpose, including constructing evidence-based arguments and using appropriate scientific language, conventions and representations.</td>
</tr>
<tr>
<td>9</td>
<td>Differences between elements, compounds and mixtures can be described at a particle level</td>
<td>Nature and development of science - Scientific understanding, including models and theories, are contestable and are refined over time through a process of review by the scientific community. Advances in scientific understanding often rely on developments in technology and technological advances are often linked to scientific discoveries. Use and influence of science - People can use scientific knowledge to evaluate whether they should accept claims, explanations or predictions. Advances in science and emerging sciences and technologies can significantly affect people’s lives, including generating new career opportunities. The values and needs of contemporary society can influence the focus of scientific research.</td>
<td>Questioning and predicting - Formulate questions or hypotheses that can be investigated scientifically. Planning and conducting - Plan, select and use appropriate investigation methods, including field work and laboratory experimentation, to collect reliable data; assess risk and address ethical issues associated with these methods. Select and use appropriate equipment, including digital technologies, to systematically and accurately collect and record data. Processing and analysing data and information - Analyse patterns and trends in data, including describing relationships between variables and identifying inconsistencies. Use knowledge of scientific concepts to draw conclusions that are consistent with evidence. Evaluating - Evaluate conclusions, including identifying sources of uncertainty and possible alternative explanations, and describe specific ways to improve the quality of the data. Critically analyse the validity of information in secondary sources and evaluate the approaches used to solve problems. Communicating - Communicate scientific ideas and information for a particular purpose, including constructing evidence-based arguments and using appropriate scientific language, conventions and representations.</td>
</tr>
<tr>
<td>10</td>
<td>Chemical reactions, including combustion and the reactions of acids, are important in both non-living and living systems and involve energy transfer</td>
<td>Nature and development of science - Scientific understanding, including models and theories, are contestable and are refined over time through a process of review by the scientific community. Advances in scientific understanding often rely on developments in technology and technological advances are often linked to scientific discoveries. Use and influence of science - People can use scientific knowledge to evaluate whether they should accept claims, explanations or predictions. Advances in science and emerging sciences and technologies can significantly affect people’s lives, including generating new career opportunities. The values and needs of contemporary society can influence the focus of scientific research.</td>
<td>Questioning and predicting - Formulate questions or hypotheses that can be investigated scientifically. Planning and conducting - Plan, select and use appropriate investigation methods, including field work and laboratory experimentation, to collect reliable data; assess risk and address ethical issues associated with these methods. Select and use appropriate equipment, including digital technologies, to systematically and accurately collect and record data. Processing and analysing data and information - Analyse patterns and trends in data, including describing relationships between variables and identifying inconsistencies. Use knowledge of scientific concepts to draw conclusions that are consistent with evidence. Evaluating - Evaluate conclusions, including identifying sources of uncertainty and possible alternative explanations, and describe specific ways to improve the quality of the data. Critically analyse the validity of information in secondary sources and evaluate the approaches used to solve problems. Communicating - Communicate scientific ideas and information for a particular purpose, including constructing evidence-based arguments and using appropriate scientific language, conventions and representations.</td>
</tr>
<tr>
<td>Activity & Description</td>
<td>Year</td>
<td>Knowledge & Understanding</td>
<td>Ways of working</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>---------------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| **Beach Games** - students work together and develop team building skills in a range of beach activities in a fun, exciting environment whilst participating in physical activity on Tannum Sands Beach. | 1-3 | **Health**
- Individual behaviour and actions, including adopting safe strategies at home, on and near roads, near water, and in relation to the sun, can promote health and wellbeing and safety
Physical Activity
- Development of body and spatial awareness improves movement and confidence in a variety of physical activities
- Development of locomotor and non-locomotor movements and manipulative skills can improve the quality of physical performance and support participation in physical activities
- Regular participation in physical activity develops movement capacity and promotes health and wellbeing |
- apply fundamental movement skills when participating in physical activities
- create and sequence simple movement patterns in response to stimuli
- apply personal development skills when interacting with others
- follow guidelines to apply safe practices |
| **Surf Awareness** - students learn how to interpret surf conditions and water safety, how to swim, body surf and body board safely, perform rescues, basic first aid and CPR along with beach games and activities. | 1-3 | **Physical Activity**
- Application of appropriate techniques for fundamental and simple specialised movement skills can enhance physical performance and participation in physical activities
- Working cooperatively, and being aware of others and fair play, can enhance the experience of physical activities for individuals and groups
- Regular participation in physical activity can improve movement capacities, personal development and health and wellbeing |
- apply fundamental and simple specialised movement skills when participating in physical activities
- create and perform movement sequences through modifying and combining movement skills and applying movement concepts
- identify and apply safe practices |
| **Scuba Intro** - students participate in an intro dive session in a pool, after learning basics of scuba diving including filling equipment, equalising your ears, and basics of water pressure. | 4/5 | **Physical Activity**
- Modifying techniques and selectively applying movement concepts can enhance physical performance and increase enjoyment in physical activities
- Refining teamwork, tactics and strategies in a variety of contexts improves movement capacities, and physical performance, and enhances participation in physical activity
- Regular participation in physical activity can enhance cardio-respiratory endurance, muscular strength and endurance, flexibility, and health and wellbeing |
- apply movement concepts and make purposeful refinements to movement skills and applying movement concepts
- identify risks and justify and apply safe practices select and demonstrate appropriate personal development skills and strategies in team and group situations |
| **Bike Riding** - students demonstrate safe bike riding skills when riding to and fro, curriculum activities around the Boyne / Tannum local area. | 6/7 | **Physical Activity**
- Developing and refining specialised movement skills through applying movement concepts supports improved physical performance and participation in physical activities
- Developing teamwork, tactical knowledge and strategic thinking supports and enhances physical performance and participation in physical activities |
- refine movement skills and apply movement concepts, and the principles of training
- create and perform movement sequences through manipulating and combining movement skills and applying movement concepts
- identify risks and devise and apply safe practices |
| **Health** | 8/9 |
- Participation in physical activity is influenced by many factors.
- Individual and group performance strategies in physical activities can improve performance. |
- select and apply positive, respectful and inclusive personal development skills and strategies
- reflect on health inequities, and identify the impact of diverse influences on health and well being, movement capacities and personal development, and the best use of positive influences |
| **Low Ropes Course** - Students develop appreciation of oneself by navigating their way through six elements of the low ropes course. | 10 | **Physical Activity**
- Development of body and spatial awareness improves movement and confidence in a variety of physical activities
- Development of locomotor and non-locomotor movements and manipulative skills can improve the quality of physical performance and support participation in physical activities
- Regular participation in physical activity develops movement capacity and promotes health and wellbeing |
- plan investigations, actions and activities
- collect, sort and analyse information and resources
- trial actions and strategies
- evaluate information, draw conclusions and make decisions
- examine risk, and decide upon and apply safe practices |
| **Raft Building** - Work as a team to build a raft from pipes, ropes, wood and then race the other teams paddling across the Boyne River. | 1-3 | **Physical Activity**
- Development of body and spatial awareness improves movement and confidence in a variety of physical activities
- Development of locomotor and non-locomotor movements and manipulative skills can improve the quality of physical performance and support participation in physical activities
- Regular participation in physical activity develops movement capacity and promotes health and wellbeing
Personal Development
- Everyday experiences and relationships give rise to different emotions in self and others
- Establishing and maintaining relationships involves effective communication, being considerate of others and respecting differences
- Identity is shaped by personal characteristics and experiences |
- pose questions and plan simple activities and investigations
- identify and collect information and evidence
- draw conclusions and make decisions
- propose and take action to promote health and wellbeing, movement capacities and personal development
- apply fundamental movement skills when participating in physical activities
- create and sequence simple movement patterns in response to stimuli
- apply personal development skills when interacting with others
- follow guidelines to apply safe practices
- reflect on and identify how behaviours, skills and actions influence health and wellbeing, movement capacities and personal development
- reflect on learning to identify new understandings. |
<table>
<thead>
<tr>
<th>SensesTrail: A blindfolded sensory exploration of the Eucalypt Forest and barefoot senses trail.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technoteering: Navigate your way through a modern day treasure hunt using GPS at Canoe Point, Tannum Sands</td>
</tr>
<tr>
<td>Initiative Games: participate in and work as a whole group to compete in activities which challenge communication, team building and team work skills such as spider web, tarp volleyball, magic shoes etc.</td>
</tr>
<tr>
<td>Problem Solving: Challenge your problem solving skills by working as a small group to attacking a range of hand-on activities including big foot, A frame, ball & loop, crate stacker etc.</td>
</tr>
<tr>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
<tr>
<td>Trust: Students will work as a team to build trust within each other to develop a feeling of physical and emotional safety with one another; by experiencing the following: trust run, trust fall, trust dive, trust rock and trust float.</td>
</tr>
<tr>
<td>Canoeing or Kayaking: Learn basic skills of canoeing and kayaking while explore aspects of the Boyne River</td>
</tr>
<tr>
<td>High Ropes Course: Students will have the opportunity to Challenges limits through our harnessed high ropes elements: 1. Possum Glider 2. Tree Climb 3. Fire cracker 4.Pamper Pole</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Activity</th>
<th>4/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of appropriate techniques for fundamental and simple specialised movement skills can enhance physical performance and participation in physical activities</td>
<td>pose and refine questions or issues, and plan activities</td>
</tr>
<tr>
<td>Working cooperatively, and being aware of others and fair play, can enhance the experience of physical activities for individuals and groups</td>
<td>collect, organise and evaluate information and evidence</td>
</tr>
<tr>
<td>Regular participation in physical activity can improve movement capacities, personal development and health and wellbeing</td>
<td>draw conclusions and make decisions by identifying connections</td>
</tr>
<tr>
<td>Personal Development</td>
<td>propose, justify and implement simple plans or actions to promote health and wellbeing, movement capacities, and personal development</td>
</tr>
<tr>
<td>Identity is influenced by personality traits, responses in a variety of social contexts, responsibilities and accomplishments</td>
<td>apply fundamental and simple specialised movement skills when participating in physical activities</td>
</tr>
<tr>
<td>Representations of people, including stereotypes, influence the beliefs and attitudes that people develop about themselves and others</td>
<td>create and perform movement sequences by selecting and combining movement skills</td>
</tr>
<tr>
<td>Positive interpersonal behaviours and respecting cultural protocols promote effective interactions and relationships in groups</td>
<td>apply personal development skills and strategies in team and group situations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Activity</th>
<th>6/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modifying techniques and selectively applying movement concepts can enhance physical performance and increase enjoyment in physical activities</td>
<td>identify and apply safe practices</td>
</tr>
<tr>
<td>Refining teamwork, tactics and strategies in a variety of contexts improves movement capacities, and physical performance, and enhances participation in physical activity</td>
<td>reflect on and identify how their own and others' behaviours, skills and actions influence health and wellbeing, movement capacities and personal development</td>
</tr>
<tr>
<td>Regular participation in physical activity can enhance cardio-respiratory endurance, muscular strength and endurance, flexibility, and health and wellbeing</td>
<td>reflect on learning to identify new understandings and future applications.</td>
</tr>
<tr>
<td>Personal Development</td>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
<tr>
<td>Identity and self-image are influenced by environmental factors, including the media, and social expectations of age, gender and culture</td>
<td>Physical Activity</td>
</tr>
<tr>
<td>Assuming roles and responsibilities, experiencing leadership opportunities, respecting cultural protocols and differences and working well with others, develops positive identity and self-esteem</td>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
<tr>
<td>Lif e events and transitions can be dealt with through meaning making, resilience strategies, and use of personal and community resources</td>
<td>Physical Activity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Activity</th>
<th>6/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing teamwork, tactical knowledge and strategic thinking supports and enhances physical performance and participation in physical activities</td>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
<tr>
<td>Developing and refining specialised movement skills through applying movement concepts supports improved physical performance and participation in physical activities</td>
<td>Physical Activity</td>
</tr>
<tr>
<td>Identity, health and wellbeing are interdependent and influenced by social and cultural factors</td>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
<tr>
<td>Effective communication skills, including reflective listening, considering alternative views, respecting cultural protocols and expressing ideas in a way that is sensitive to others, help people establish and maintain relationships</td>
<td>Physical Activity</td>
</tr>
<tr>
<td>Conflict resolution strategies, including negotiation, are used to manage intrapersonal and interpersonal situations</td>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Activity</th>
<th>8/9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in physical activity is influenced by many factors</td>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
<tr>
<td>Individual and group performance strategies in physical activities can improve performance</td>
<td>Physical Activity</td>
</tr>
<tr>
<td>Self-concept and self-esteem are influenced by the interrelatedness of internal and external factors that affect a person’s behaviour, and in turn influence the relationships between individual persons, between individuals and the family, and between individuals and the community.</td>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
<tr>
<td>Effective communication and cooperation skills are required to implement decisions and to resolve conflict</td>
<td>Physical Activity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Activity</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>pose and refine questions or issues, and plan activities</td>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
<tr>
<td>collect, organise and evaluate information and evidence</td>
<td>Physical Activity</td>
</tr>
<tr>
<td>draw conclusions and make decisions by identifying connections</td>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
<tr>
<td>propose, justify and implement simple plans or actions to promote health and wellbeing, movement capacities, and personal development</td>
<td>Physical Activity</td>
</tr>
<tr>
<td>apply fundamental and simple specialised movement skills when participating in physical activities</td>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
<tr>
<td>create and perform movement sequences by selecting and combining movement skills</td>
<td>Physical Activity</td>
</tr>
<tr>
<td>apply personal development skills and strategies in team and group situations</td>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
<tr>
<td>identify and apply safe practices</td>
<td>Physical Activity</td>
</tr>
<tr>
<td>reflect on and identify how their own and others’ behaviours, skills and actions influence health and wellbeing, movement capacities and personal development</td>
<td>Leadership activities: Take part in a range of activities that require students to be inclusive, good listeners and proactive in solving team based problems.</td>
</tr>
<tr>
<td>reflect on learning to identify new understandings and future applications.</td>
<td>Physical Activity</td>
</tr>
<tr>
<td>Activity & Description</td>
<td>Ye ar</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
</tr>
</tbody>
</table>
| **Bush cooking** – discuss the cooking traditions and techniques before the influence of technology and learn how to prepare a bush cooking open campfire to cook own damper and boil Billy tea. | 1 | The Past in the Present
• The impact of changing technology on people’s lives (at home and in the ways they worked, travelled, communicated, and played in the past) | Chronology, terms and concepts
• Sequence familiar objects and events
• Distinguish between the past, present and future
Historical questions and research
• Pose questions about the past using sources provided
Analysis and use of sources
• Explore a range of sources about the past
• Of objects from the past and present
Perspectives and interpretations
• Explore a point of view
Explanation and communication
• Develop a narrative about the past.
• Use a range of communication forms (oral, graphic, written, role play) and digital technologies |
| **Wood fired Pizza cooking** – learn about ‘black ovens’ whereby food was cooked by the heating of wood in a chamber. | 3 | Community and Remembrance
• Days and weeks celebrated or commemorated in Australia (including Australia Day, ANZAC Day, Harmony Week, National Reconciliation Week, NAIDOC week and National Sorry Day) and the importance of symbols and emblems
• Celebrations and commemorations in other places around the world; for example, Bastille Day in France, Independence Day in the USA, including those that are observed in Australia such as Chinese New Year, Christmas Day, Diwali, Easter, Hanukkah, the Moon Festival and Ramadan | Chronology, terms and concepts
• Sequence historical people and events
• Use historical terms
Historical questions and research
• Pose a range of questions about the past
• Identify sources
Analysis and use of sources
• Locate relevant information from sources provided
Perspectives and interpretations
• Identify different points of view.
Explanation and communication
• Develop texts, particularly narratives
• Use a range of communication forms (oral, graphic, written) and digital technologies |
| **Chimineas**: discuss the development of technology with the invention of a clay Mexican chimenea. This combined nature’s elements – fire & earth to provide heat for their family as well as a vessel for cooking and baking. Students will light the fire and bake a bread in the chiminea to experience the tradition. | 4 | First Contacts
• The diversity and longevity of Australia’s first peoples and the ways Aboriginal and/or Torres Strait Islander peoples are connected to Country and Place (land, sea, waterways and skies) and the implications for their daily lives | Chronology, terms and concepts
• Sequence historical people and events
• Use historical terms
Historical questions and research
• Identify questions to inform an historical inquiry
• Identify and locate a range of relevant sources
Analysis and use of sources
• Locate information related to inquiry questions in a range of sources.
• Compare information from a range of sources.
Perspectives and interpretations
• Identify points of view in the past and present
Explanation and communication
• Develop texts, particularly narratives and descriptions, which incorporate source materials
• Use a range of communication forms (oral, graphic, written) and digital technologies |
| **Chinese New Year** – experience the celebration of a different culture and the importance of this holiday. Students create their own red coloured decorations to signify happiness, wealth and good fortune and participate in celebratory games and taste samples of Chinese food. | 6 | Australia as a Nation
• The contribution of individuals and groups, including Aboriginal people and/or Torres Strait Islander peoples and migrants, to the development of Australian society, for example in areas such as the economy, education, science, the arts, sport. | Chronology, terms and concepts
• Sequence historical people and events.
• Use historical terms and concepts
Historical questions and research
• Identify questions to inform an historical inquiry
• Identify and locate a range of relevant sources
Analysis and use of sources
• Locate information related to inquiry questions in a range of sources.
• Compare information from a range of sources.
Perspectives and interpretations
• Identify points of view in the past and present
Explanation and communication
• Develop texts, particularly narratives and descriptions, which incorporate source materials
• Use a range of communication forms (oral, graphic, written) and digital technologies |
<p>| Indigenous & Environment study- bike ride around the local area and study how the Indigenous people hunted and gathered and the way they interpreted the weather and skies. | 6 | | |
| Indigenous Games – actively participate in a range of Indigenous games and discuss the impact they have had on modern games played in Australia. | 6 | | |</p>
<table>
<thead>
<tr>
<th>Activity & Description</th>
<th>Yr</th>
<th>Geographical Knowledge & Understanding</th>
<th>Geographical Inquiry and Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Impact / Environment Study – study the impact of human induced factors including manmade features, land/ mangrove clearing, over fishing, fires and polluted waterways on the environment and species present. Students investigate ways to improve sustainability.</td>
<td>1</td>
<td>The natural, managed and constructed features of places, their location, how they change and how they can be cared for.</td>
<td>Observing, questioning and planning. Collecting, recording, evaluating and representing. Collect and record geographical data and information, for example, by observing, by interviewing, or from sources such as photographs, plans, satellite images, story books and films. Represent the location and the location of places and their features by constructing tables, plans and labelled maps.</td>
</tr>
<tr>
<td>Geocaching – take part in a treasure hunting game where you use a GPS find containers around the BIEEC grounds.</td>
<td>2</td>
<td>The ways in which Aboriginal and Torres Strait Islander Peoples maintain special connections to particular Country/Place.</td>
<td>Interpreting, analysing and concluding. Draw conclusions based on the interpretation of geographical information sorted into categories. Communicating. Present findings in a range of communication forms, for example, written, oral, digital, graphic, tabular, and visual, and use geographical terminology. Reflecting and responding. Reflect on their learning and suggest responses to their findings.</td>
</tr>
<tr>
<td>Port tour – take the bus to the lookout over the Gladstone Port and explore coal loading in action.</td>
<td>3</td>
<td>The similarities and differences in individuals’ and groups’ feelings and perceptions about places, and how they influence views about the protection of these places.</td>
<td>Observing, questioning and planning. Develop geographical questions to investigate. Collecting, recording, evaluating and representing. Collect and record relevant geographical data and information, for example, by observing by interviewing, conducting surveys, measuring, or from sources such as maps, photographs, satellite images, the media and the internet.</td>
</tr>
<tr>
<td>Alumina refinery tour - See the world’s largest alumina refinery at Queensland Alumina. Drive through the alumina plant and observe the processes & stages of the production of the alumina refinery.</td>
<td>4</td>
<td>The types of natural vegetation and the significance of vegetation to the environment and to people. The importance of environments to animals and people, and different views on how they could be used sustainably. The natural resources provided by the environment, and different views on how they could be used sustainably. The sustainable management of waste from production and consumption.</td>
<td>Interpreting, analysing and concluding. Interpret geographical data to identify distributions and patterns and draw conclusions. Communicating. Present findings in a range of communication forms, for example, written, oral, digital, graphic, tabular, and visual, and use geographical terminology. Reflecting and responding. Reflect on their learning to propose individual action in response to a contemporary geographical challenge and identify the expected effects of the proposal.</td>
</tr>
<tr>
<td>Power station tour – Drive around the outside of the power station and observe the coal powered steam engines generating electricity.</td>
<td>5</td>
<td>The influence of people, including Aboriginal and Torres Strait Islander Peoples, on the environmental characteristics of Australian places. The influence of the environment on the human characteristics of a place. The influence people have on the human characteristics of places and the management of spaces within them. The impact of bushfires or floods on environments and communities, and how people can respond.</td>
<td>Interpreting, analysing and concluding. Interpret geographical data to identify distributions and patterns and draw conclusions. Communicating. Present findings and ideas in a range of communication forms, for example, written, oral, graphic, tabular, visual and maps; using geographical terminology and digital technologies as appropriate. Reflecting and responding. Reflect on their learning to propose individual and collective action in response to a contemporary geographical challenge and describe the expected effects of their proposal on different groups of people.</td>
</tr>
<tr>
<td>Botanic Gardens 1:</td>
<td>7</td>
<td>Water in the world. The classification of environmental resources and the forms that water takes as a resource. The ways that flows of water connect places as it moves through the environment and the way this affects places. The quantity and variability of Australia’s water resources compared with those in other continents.</td>
<td>Interpreting, analysing and concluding. Interpret geographical data and other information, using digital and spatial technologies as appropriate, and identify spatial distributions, patterns and trends, and infer relationships to draw conclusions. Communicating. Present findings and ideas in a range of communication forms, for example, written, oral, graphic, tabular, visual and maps; using geographical terminology and digital technologies as appropriate. Reflecting and responding. Reflect on their learning to propose individual and collective action in response to a contemporary geographical challenge and describe the expected effects of their proposal on different groups of people.</td>
</tr>
<tr>
<td>Bush tucker</td>
<td>Unit 1: Landforms and landscapes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– take a guided walk through the Toondoon Botanic gardens and experience the various bush tucker present and sources of natural remedies.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The different types of landscapes and their distinctive landform features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The aesthetic, cultural and spiritual value of landscapes and landforms for people, including Aboriginal and Torres Strait Islander Peoples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The geomorphic processes that produce landforms, including a case study of at least one landform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The human causes and effects of landscape degradation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The ways of protecting significant landscapes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The causes, impacts and responses to a geomorphological hazard</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Botanic Gardens 2: Region Vegetation Communities - examine the various vegetation communities present at Toondoon Botanic Gardens and from the local area. |
| Biomes and food security |
| • The distribution and characteristics of biomes as regions with distinctive climates, soils, vegetation and productivity |
| • The human alteration of biomes to produce food, industrial materials and fibres, and the environmental effects of these alterations |
| • The challenges to food production, including land and water degradation, shortage of fresh water, competing land uses, and climate change, for Australia and other areas of the world |

| Waterwatch - examine the effects of turbidity, salinity, pH, temperature and dissolved oxygen on water quality. Compare abundance and diversity of organisms with water quality. |
| Environmental change and management |
| • The human-induced environmental changes that challenge sustainability |
| • The environmental worldviews of people and their implications for environmental management |

| Ecosystem/Food web Study- students investigate food webs and availability of food in different biomes in the local area. Students identify threats to food availability and how to reduce these. |
| Observing, questioning and planning |
| • Develop geographically significant questions and plan an inquiry that identifies and applies appropriate geographical methodologies and concepts |
| • Collect, select, record and organise relevant geographical data and information, using ethical protocols, from a range of appropriate primary and secondary sources |
| • Evaluate sources for their reliability, bias and usefulness, and represent multi-variable data in a range of appropriate forms, for example, scatter plots, tables, field sketches and annotated diagrams, with and without the use of digital and spatial technologies |
| • Represent the spatial distribution of geographical phenomena by constructing special purpose maps that conform to cartographic conventions, using spatial technologies as appropriate |

| Interpreting, analysing and concluding |
| • Evaluate multi-variable data and other geographical information using qualitative and quantitative methods, and digital and spatial technologies as appropriate, to make generalisations and inferences, propose explanations for patterns, trends, relationships and anomalies, and predict outcomes |
| • Apply geographical concepts to synthesise information from various sources and draw conclusions based on the analysis of data and information, taking into account alternative points of view |
| • Identify how geographical information systems (GIS) might be used to analyse geographical data and make predictions |

| Communicating |
| • Present findings, arguments and explanations in a range of appropriate communication forms, selected for their effectiveness and to suit audience and purpose; using relevant geographical terminology, and digital technologies as appropriate |

| Reflecting and responding |
| • Reflect on and evaluate the findings of the inquiry to propose individual and collective action in response to a contemporary geographical challenge, taking account of environmental, economic and social considerations; and explain the predicted outcomes and consequences of their proposal |
BIEEC Evening Programs & other Activity

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope study</td>
<td>Using the Digital and Optical Microscopes to explore organisms from the day’s activities.</td>
</tr>
<tr>
<td>Astronomy</td>
<td>Exploring constellations in the solar system, distance of stars from Earth and astronomy stories.</td>
</tr>
<tr>
<td>React table</td>
<td>A music synthesiser whereby students create their own music or sound effects through means of a technologically advanced musical instrument.</td>
</tr>
<tr>
<td>Australia’s got Talent</td>
<td>Host your own talent show whereby students can perform any act including singing, dancing, comedy, gymnastics and have a vote to determine who has talent in your group.</td>
</tr>
<tr>
<td>Trivia night</td>
<td>Conduct your own trivia night and split students up into teams. Ask students a list of questions related to their studies/areas of interest and they compete against their friends.</td>
</tr>
<tr>
<td>Karaoke/ Fitness (Wii)</td>
<td>Conduct a karaoke / Wii challenge whereby students sing along and get booted off stage. Winner sings on.</td>
</tr>
<tr>
<td>Artwork</td>
<td>Make art objects from materials collected during the day and present to the group.</td>
</tr>
<tr>
<td>Campfire</td>
<td>Prepare an open camp fire and sit around as a group to discuss the events of the day and melt marshmallows on a stick as a relaxing, wind down activity.</td>
</tr>
<tr>
<td>Movie</td>
<td>Choose from a selection of movies / bring your own to play in the learning centre.</td>
</tr>
<tr>
<td>River walk</td>
<td>Take students along the bike path for a walk along the Boyne River.</td>
</tr>
<tr>
<td>Computers</td>
<td>Using Google Earth or Web programs to develop the students’ spatial awareness of the world or build on the day’s activities.</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCUBA (C Card)</td>
<td>Complete your SCUBA diving C Card to learn the basic knowledge and skills necessary to safely dive in shallow water.</td>
</tr>
<tr>
<td>Boat Licence (RMDL)</td>
<td>Students participate in theoretical and practical components of boating to gain their Recreational Marine Drivers Licence certification.</td>
</tr>
</tbody>
</table>